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In much work which has appeared rectly, exact solutions of some dynamic 
problems have been replaced by exact solutions of more simple problems 
of the theory of elasticity, or by approximate solutions. In many cases 
the admissible error was not estimated and the possible region of appli- 
cability of the formulas obtained was not determined. In order to reduce 
the probability of erroneous conclusions to which this leads, it is use- 
ful to compare the results of exact and approximate estimates where 

possible. 

An appreciable part of the previously completed investigations relates 
to wave processes in the neighborhood of the axes of symmetry in media 
with plane parallel boundaries. The smaller the edge effects in this 
neighborhood, the more complex the side and surface (Rayleigh) waves 
which appear in solid bodies far from the axes. Nevertheless with the 
boundary conditions encountered in practice, wave fields in different 
problems may differ appreciably from one another on the axes also. 

In [d the inadmissibility of calculations made according to formulas 
for acoustically approximate stresses inside a medium on the axes of sym- 
metry has already been affirmed in the case of concentrated forces 
applied normal to the surface. The concentrated and distributed effects 
of the comparison were made of the calculated displacement and stress 
fields according to exact formulas for the semiplane and for unbounded 
media, according to acoustically approximate formulas, and according to 
formulas obtained on assumptions made in [21 (where the horizontal dis- 
placement was set equal to zero in the whole semispace, while the velo- 
cities of the transverse and longitudinal waves were set equal to one 
another). 

Exact solutions of problems of oscillations of a semiplane under 
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force applied at the boundaries have often been obtained in integral form 

by different methods. Nevertheless, because of a certain difficulty the 

formulas for a quantitative study of these solutions have not been pro- 

vided completely enough in the case of a concentrated effect. Certain 

special results have been obtained only in certain cases of distributed 

effects. Upon taking into consideration that it is expedient (on the 

basis of economy of space and time) not to dwell on the derivation of 

known solutions, but rather to formulate the boundary and initial condi- 

tions.for certain wave fields and to write out the formulas. 

1. We introduce cylindrical coordinates r, 8, z, and on the boundary 

z = 0 of the semispace at rest z > 0 we have axially-symmetric stresses 

n2 
c, = - 

2n (1 _t n++ e (t) I z,, = 0 (1.1) 

where s(t) = 0 for t < 0, e(t) = 1 for t > 0, and n is a derived para- 

meter C31. 

By integration of the stresses (1.1) along the whole boundary it is 

not difficult to convince oneself that the summed effect corresponds to 

unit force. For n - 0) this force is concentrated at the origin. For small 

n the value of (1.1) changes slowly as a function of finite r. and, upon 

analyzing the wave picture near the boundaries around the origin, it is 

natural to expect that such effects are equivalent to uniformly 

distributed loads created by a simple plane wave. By giving different 

values to n, one may obtain all possible ranges of distributed effects 

and a higher or lower degree of approximation for the above mentioned 

limiting cases. 

2. Upon putting the displacement components tl) and the horizontal q 

corresponding to the effect (1.1) into the formulas, and setting r = 0 

(for which q = 0) , we obtain on the axis of symmetry 

1 

l[ 1 
ga 

lL’ - 4nzlli 
1 C-R (5) - .._,-qbt:l,,-,]dc (2.1) 

where the first summation describes the longitudinal waves and the second, 

the transverse waves: and 

g=3+p, 
--7 c(_~‘17pp. p~~~/+_t-, R (5) = g2 - 4crp 

T=bla, b =VP/P. a =V (h + 2p) j p (2.2) 

in which h and v denote the Lam6 elastic constants, p the density, a and 

6 the velocities of propagation of the longitudinal and transverse waves. 

The contour 1 of integration passes so that the function summed under 
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the integral sign on the right includes the pole, if the region is con- 
sidered to be behind the wave front. For the region ahead of the front, 

the corresponding summation will not have a pole and the integral will 

reduce to zero. 

If new dimensionless variables are introduced into Formula (2.1) 

then after 

gration of 
the poles, 

z=bt/z, x=Z/nz (2.3) 

deformation of the contour .I in the right semiplane and inte- 

the first and second suas corresponding to a circuit around 
with 

appearing as roots of the equations Tc - a - K = 0. 75 - 8 - K = 0, we 

obtain 

w=& C 

a 4 
2R($L%) ~==t,e(T-1)-R(5)(1+xB) I I ,ee(z - f)] (2.5) 

The formulas for the stresses are found analogously as 

The solution for the concentrated effect comes from Formulas (2.4) to 

(2.6) by passing to the limit K - 0. This solution has been given before _ _ 
in [1,31. 

3. We now consider solutions obtained on the first assumption of T21. 
In this paper the horizontal displacements were set equal to zero in the 

whole semispace, and the vertical displacements were completely deter- 
mined from known vertical forces on the boundary. No boundary conditions 
whatever are Imposed as regards the shear stresses; they will be uniquely 
determined. 

The problem in fact reduces to solution of the equation 

azw a2w 
G=a2a,a+b2 ( dew f aw -- s-t ,. ar ) 

under the condition 

(3.1; 

(3.2) 
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Upon application of the method of incomplete separation of variables, 
the displacement v symmetrical about the axis may be expressed in integral 
form 

P 
wzz- s 4 

4n21”-iz 1 ~1/1+b”(rg--y 1/iTp--F) 

From the theorem of residues we determine that 

(3.3) 

1 7 
( 

zx+~JfT~-~~+%~ 

w =nll-z2(pt-x1/i+&J2) 
E@--T) 50 = t2-yz (3.4) 

Here &, is a root of the equation T$ - y\f (1 I- 5’) - K = 0. 

We have for the stresses 

These give for K = 0 

w “n+(T-7), 2 a 
6z=--2- 

lzz az { 
k e(Z--7) 2yx 1 (3.6) 

We note that the wave front corresponding to the solution of Equation 
(3.1) under the condition (3.2) for a concentrated effect (K = 0) is an 
ellipsoid of rotation with the larger semiaxis at along the z-axis and 
with the smaller semiaxis bt along the r-axis. 

4. If, in the semispace problem, the condition requiring the horizontal 

displacements to be zero is relaxed so that they are zero only on the 
boundary (the problem is now formu1ated correctly in distinction from the 
preceding case). then it is not difficult to convince oneself that a 
doubled solution of the problem is obtained for an unlimited medium td . 
The displacements and stresses corresponding to such a postulation are 
expressed on the axis of symmetry by the formulas 

I a 
($ =- 

w P -- 
z nz2 I% 2c8(1 + xa) I C-_C, E (r - r, - 53 (1 + x3) I LGrl, s (r --I)] 

(4.2) 

in which 51 and <g have the values as in (2.4). We obtain for K = 0 

(4.4) 
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1 a- 
0, = --- l( 3x22 dz T3 + 

1 - 272. 
2 z ) e (z - 7) - (23 - z) 8 (z - 1)] (4.5) 

1 a 
or=-3z -T 

II( 

T3 1 --2 

+aT E(Z 
) 

-<T,-t($- +)e@-1,] (4.6) 

5. The solution of the acoustical problem may be found from the solu- 
tion of the dynamic problem by passing to the limit and requiring the 
velocity of the transverse waves to approach zero. Actually, upon reject- 
ing the second sums corresponding to transverse waves in Formulas (2.5) 
and (2.‘7), we replace b by bu in the first summations (equivalent to re- 
placement of ~1 = pb2 by pu2, y by yu, and CI by <Iu-~), and let u approach 
zero considering b (and also p) as invariable parameters. We find as a 
result 

(5.1) 

1 a2 

I 
1 a a 

w = n& 2c2 (1 -j- xa) ir E(t--r), 6,=Q,.=ae=--- 
nz2 8~ 2<(1+xa) r,e(‘F-T) I 1 

Formulas (5.1) take for K = 

2 

w=~&-&z-~7). 

One can be easily convinced 
same results on passing to the 

0 the form 

1 a 
6r=6r=bg=-~2~ (+E(-T)) (5.2) 

that Formulas (4.1) to (4.6) lead to the 
1 imit. Analo- 

gously, passing to the limit in Formulas (3.4) 
gives the values 

reducing (from an incorrect formulation of the 0 
7.J 

y , 2 3 
problem) to infinity upon passing to the con- Fig. 1. 
centrated effect (no physical significance is 
attached to the displacements in the acoustical 
case since they grow without limit with increasing T). 

6. In [21, in addition to the assumption of zero horizontal displace- 
ments, it was considered possible also to equate the velocities of pro- 
pagation of the transverse and longitudinal waves. Formula (3.3) gives 
in this case 

1 +r2 
u’ = iijii 2 (1 + xa) +c, E (z - 7) (6.1) 

coinciding with the acoustical solution for f = y (on the longitudinal 
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wave front), and for T > y it grows monotonically up to a certain limit 

but remains smaller than the previously mentioned solution. With these 

assumptions the stress oz coincides with the 

I’ acoustical solution for any T, but ur = a0 takes 

6; 8’ 
,’ 

B 

the paradoxical value - uz. In fact, the 

assertion of the author of [2] that solutions 
I’ 

I’ 
of nonacoustical problems are obtained from the 

two assumptions for solid media is shown to be , 
/’ 

/ 
untrue for the stress uz. In general his solu- 

/ tion (considering also the ur, ue components) 

z- is worse than the acoustical solution or any of 

V i 2 the other solutions considered above which re- 

Fig. 2. fleet the actual picture. 

7. We present results of quantitative esti- 

mates from solutions of different problems with different distributed 

forces on the boundary z = 0. 

First we note that for large values of K where the boundary forces 

near the axes of symmetry are close to a uniformly distributed dynamic 

load but for finite times T including the 

arrival times of the longitudinal and trans- 

verse wave fronts, the main part of the 

dynamic process is described as a plane 

longitudinal wave. Asymptotic estimates of 

this are given by Formulas (5.3) for all 

problems considered. Only for ur = a0 in 

the acoustical case (when y = 0) we have in 

place of the equality ur = ue = (1 - y’)‘~, 

the natural equality ar = a0 = az; in the Fig. 3. 

case of the arbitrary assumption of equal- 

ity of wave velocities we obtain the physically inadmissible equality 

ur = a0 = - oz. 

For a concentrated effect when K = 0, the displacement w at a point 

on the axis of symmetry for y2 = 0.33 is described’in Fig. 1 with 

accuracy up to a multiplier l/W~z. In this figure, as well as in all 

succeeding figures, the continuous thick line relates to the solution 

for a solid semispace, the thin line to the doubled solution for a solid 

unlimited medium, the dashed line to the acoustical problem, the line of 

points to the solution obtained on the assumption of zero horizontal dis- 

placements over the whole semispace, and the dot-dash line relates to 

solutions obtained on the basis of the two assumptions made in [21 

(q = 0, equality of velocities of longitudinal and transverse waves). 

The corresponding stresses u ’ and u ’ = a,~,’ are shown in Figs. 2 and 3, 

Within the accuracy of a muliiplier ;/wz’. We note that in Fig. 1 the 
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dotted line and the dashed line coincide in certain portions with the 
thin continuous line, and that in Fig. 2 the line of points coincides 
with the dashed line. 

Estimates of the wave fields for K = 1 are also presented. The force 
distribution at the boundary z = 0 (disregarding the factor 1/2nz2) is 
shown in Fig. 4 as a function of r/z. The corresponding displacements are 
shown in Fig. 5. the stress CT zo in Fig. 6, and the stresses uro = 56’ tv 
in Fig. 7. to the same accuracy as before. (The dot-dash line coincides 
with the dashed line in Fig. 6). 

6Z 
8. Comparison of the curves shows that the wave 

1 

li!?ld 

field in the solid semispace on the axis of sym- 
metry is described best of all by the doubled solu- 
tion for an unlimited medium. The displacements v 
and the stress az are also well described by the 

; 
solution obtained on the assumption of zero horizon- 

0 l 2 tal displacements q over the whole semispace. The 
solution of the acoustical problem, as well 8s the 

Fig. 4. solution obtained in [2] on the two previously 
mentioned assumptions gives values too low (and also 

untrue for Certain components) even for values of K appreciably differ- 
ent from Zero. 

This same regularity also appears upon 
passing from the s(t) effect to an arbi- 
trary effect f(t). which for ease of calcu- 
lation is suitably approximated by a broken 
line [d. If the duration of the effect (or 
more correctly, its most rapidly decaying 
portion) exceeds the difference in arrival 
time of the longitudinal and the transverse 
waves (always true at points near the Y f 2 3 

source), then as the curves show, the wave Fig. 5. 
field behind the transverse wave front be- 
gins to play an essential or oven a princi- 
pal role in the dynamic process. This field approximates a static field 
for the I effect, while the f(t) effect describes processes which, as 
we understand them. must be considered as being close to quasistatic 
oscillations. For protracted and sufficiently smooth f(t) effects. the 
sharpness of the change in the field near the fronts, essential in the 
e(t) effect, is shown to be insignificantly small and the process is 
established as being completely quasistat ic. 

The sharp variation in the wave field in the prefrontal region plays 
an essential role in linear problems of the theory of elasticity only 
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(16.3) 

In making the sth approximation the quantities with an asterisk and a 
superscript (s - 1) can be taken as known. In $iftio:tS;aking into 
account formulas (3.6), we can also consider ‘cIz 
(16.3) as known quantities. 

’ ?yz and oz~8’ in 
Thus IZxpressions (16.3) are the equations of 

the clas&yl theory of plates. 
T*(8) 

In these expressions the terms containing 

’ Tyr 
and a,ks) represent the externally applied forces and 

mZents respectively. 

For s = 1 we have that vti8) = 0, v;i”’ = 0, 4ozi8)= p and the con- 
ditional load applied to the plate coincides with that considered in an 
analysis based on the classical theory. 

For s = 2 we have that v*(8) = 0, v*(8) = 0, o$” = 0 and the condi- 
tional load vanishes. For s”; 2 the coGitiona1 forces and moments in the 
sth approximation depend on the stresses of the (s - 2)th approximation. 
‘Ihe conditional load intensity diminishes as s increases according to 
the law h”‘. 

The boundary conditions required for finding the biharmonic function 
$1) are given by (15.2) to (15.4) and (15.6). In these equalities v1 (1) 

can be expressed according to Formula (12.3) and ul(l) can be written in 
terms of w@(l) with the aid of (3.3). Taking this into account and 
making use of Formulas (16.2), we obtain: 

the boundary conditions corresponding to a free edge 

the boundary conditions corresponding.to a fully fixed edge 

a&o) I dx = 0, UN = 0 

and the boundary conditions corresponding to a simply-supported edge 

M$ = 0, z.&) = 0 

It follows that the first approximation of the basic iteration 
process is equivalent to the classical theory of plates, in the identity 


